Definition: A surd is an irrational number that cannot be simplified to remove the square root (or cube root, etc.). Surds are left in root form because they represent exact values that can't be expressed as a simple fraction or decimal. For example, \\( \sqrt{2} \\) and \\( \sqrt{5} \\) are surds because their decimal expansions are non-terminating and non-repeating.
Why Surds Matter:
Basic Properties of Surds:
Example 1: Simplifying Surds
Simplify \\( \sqrt{50} \\).
Solution: \\( \sqrt{50} = 5 \sqrt{2} \\).
Example 2: Multiplying Surds
Simplify \\( \sqrt{3} \times \sqrt{12} \\).
Solution: \\( \sqrt{3} \times \sqrt{12} = 6 \\).
Example 3: Rationalizing the Denominator
Rationalize the denominator of \\( \frac{5}{\sqrt{7}} \\).
Solution: \\( \frac{5}{\sqrt{7}} = \frac{5\sqrt{7}}{7} \\).
Example 4: Adding and Subtracting Surds
Simplify \\( 3\sqrt{5} + 2\sqrt{5} - \sqrt{5} \\).
Solution: \\( 4\sqrt{5} \\).
Example 5: Expanding Expressions Involving Surds
Expand \\( (2 + \sqrt{3})(3 - \sqrt{3}) \\).
Solution: \\( 3 + \sqrt{3} \\).
1. Simplify \\( \sqrt{75} \\).
Correct! The answer is \\(5\sqrt{3}\\).
Incorrect. Try again.
2. Multiply and simplify \\( \sqrt{2} \times \sqrt{18} \\).
Correct! The answer is 6.
Incorrect. Try again.